
Development Methodology

Development Methodology

Introduction

There have been numerous requests regarding the Atomicat development methodology. In a 
nutshell, we use the X-Treme Methodology (XP) to develop solutions and this brief will 
provide an overview thereof.

What Is The X-Treme Programming Methodology (XP)?

Extreme Programming is also know as X-Treme Programming or XP. In this paper we will 
refer to it as “Extreme Programming”.

In case you’re wondering, “XP” has absolutely nothing to do with a Microsoft operating 
system, the acronym was in use for many years before to refer to the Extreme Programming 
methodology. It’s a fluke that Microsoft have a similarly named product series but if they used 
the methodology of the same name it can only bode well for them. 

Extreme Programming is a discipline of software development based on values of simplicity, 
communication, feedback, and courage. It works by bringing the whole team together in the 
presence of simple practices, with enough feedback to enable the team to see where they are
and to tune the practices to their unique situation.

In Extreme Programming, every contributor to the project is an integral part of the "Whole 
Team". The team forms around a business representative called "the Customer", who sits 
with the team and works with them daily.

The core practises, in brief, are as follows;

 Whole Team – Extreme Programming teams use a simple form of planning and 
tracking to decide what should be done next and to predict when the project will be 
done. Focused on business value, the team produces the software in a series of 
small fully-integrated releases that pass all the tests the Customer has defined.

 Planning Game, Small Releases, Customer Tests – Extreme Programmers work 
together in pairs and as a group, with simple design and obsessively tested code, 
improving the design continually to keep it always just right for the current needs. 

 Simple Design, Pair Programming, Test-Driven – Development, Design 
Improvement The Extreme Programming team keeps the system integrated and 
running all the time. The programmers write all production code in pairs, and all work 
together all the time. They code in a consistent style so that everyone can understand
and improve all the code as needed.

 Continuous Integration, Collective Code Ownership, Coding Standard – The 
Extreme Programming team shares a common and simple picture of what the system
looks like. Everyone works at a pace that can be sustained indefinitely. 

 Metaphor, Sustainable Pace – A single understanding and vision of what is being 
developed tempered by realistic goals

We will now review the core practises in greater detail.

Atomicat is a Division of Planet Limited    Confidential Page 1 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

Whole Team

All the contributors to an XP project sit together, members of one team. This team must 
include a business representative - the "Customer" - who provides the requirements, sets the 
priorities, and steers the project. It's best if the Customer or one of her aides is a real end 
user who knows the domain and what is needed. 

The team will of course have programmers. The team may include testers, who help the 
Customer define the customer acceptance tests. Analysts may serve as helpers to the 
Customer, helping to define the requirements. There is commonly a coach, who helps the 
team keep on track, and facilitates the process. 

There may be a manager, providing resources, handling external communication, 
coordinating activities. None of these roles is necessarily the exclusive property of just one 
individual: Everyone on an XP team contributes in any way that they can. The best teams 
have no specialists, only general contributors with special skills.

Planning Game

XP planning addresses two key questions in software development: predicting what will be 
accomplished by the due date, and determining what to do next. 

The emphasis is on steering the project - which is quite straightforward - rather than on exact 
prediction of what will be needed and how long it will take - which is quite difficult. There are 
two key planning steps in XP, addressing these two questions:

 Release Planning is a practice where the Customer presents the desired features to 
the programmers, and the programmers estimate their difficulty. With the costs 
estimates in hand, and with knowledge of the importance of the features, the 
Customer lays out a plan for the project. Initial release plans are necessarily 
imprecise: neither the priorities nor the estimates are truly solid, and until the team 
begins to work, we won't know just how fast they will go. Even the first release plan is
accurate enough for decision making, however, and XP teams revise the release plan
regularly.

 Iteration Planning is the practice whereby the team is given direction every couple 
of weeks. XP teams build software in two-week "iterations", delivering running useful 
software at the end of each iteration. During Iteration Planning, the Customer 
presents the features desired for the next two weeks. The programmers break them 
down into tasks, and estimate their cost (at a finer level of detail than in Release 
Planning). Based on the amount of work accomplished in the previous iteration, the 
team signs up for what will be undertaken in the current iteration.

These planning steps are very simple, yet they provide very good information and excellent 
steering control in the hands of the Customer. Every couple of weeks, the amount of progress
is entirely visible. There is no "ninety percent done" in XP: a feature story was completed, or it
was not. 

This focus on visibility results in a nice little paradox: on the one hand, with so much visibility, 
the Customer is in a position to cancel the project if progress is not sufficient. On the other 
hand, progress is so visible, and the ability to decide what will be done next is so complete, 
that XP projects tend to deliver more of what is needed, with less pressure and stress.

Atomicat is a Division of Planet Limited    Confidential Page 2 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

Customer Tests

As part of presenting each desired feature, the XP Customer defines one or more automated 
acceptance tests to show that the feature is working. The team builds these tests and uses 
them to prove to themselves, and to the customer, that the feature is implemented correctly. 
Automation is important because in the press of time, manual tests are skipped. That's like 
turning off your lights when the night gets darkest.

The best XP teams treat their customer tests the same way they do programmer tests: once 
the test runs, the team keeps it running correctly thereafter. This means that the system only 
improves, always notching forward, never backsliding.

Small Releases

XP teams practice small releases in two important ways:

First, the team releases running, tested software, delivering business value chosen by the 
Customer, every iteration. The Customer can use this software for any purpose, whether 
evaluation or even release to end users (highly recommended). The most important aspect is 
that the software is visible, and given to the customer, at the end of every iteration. This 
keeps everything open and tangible.

Second, XP teams release to their end users frequently as well. XP Web projects release as 
often as daily, in house projects monthly or more frequently. Even shrink-wrapped products 
are shipped as often as quarterly.

It may seem impossible to create good versions this often, but XP teams all over are doing it 
all the time. See the Continuous Integration section below for more on this, and note that 
these frequent releases are kept reliable by XP's obsession with testing (described here in the
sections about Customer Tests and Test-Driven Development). 

Simple Design

XP teams build software to a simple design. They start simple, and through programmer 
testing and design improvement, they keep it that way. An XP team keeps the design exactly 
suited for the current functionality of the system. There is no wasted motion, and the software 
is always ready for what's next.

Design in XP is not a one-time thing, or an up-front thing, it is an all-the-time thing. There are 
design steps in release planning and iteration planning, plus teams engage in quick design 
sessions and design revisions through refactoring, through the course of the entire project. In 
an incremental, iterative process like Extreme Programming, good design is essential. That's 
why there is so much focus on design throughout the course of the entire development.

Pair Programming

All production software in XP is built by two programmers, sitting side by side, at the same 
machine. This practice ensures that all production code is reviewed by at least one other 
programmer, and results in better design, better testing, and better code. 

Atomicat is a Division of Planet Limited    Confidential Page 3 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

It may seem inefficient to have two programmers doing "one programmer's job", but the 
reverse is true. Research into pair programming (www.pairprogramming.com) shows that 
pairing produces better code in about the same time as programmers working singly. That's 
right: two heads really are better than one!

Some programmers object to pair programming without ever trying it. It does take some 
practice to do well, and you need to do it well for a few weeks to see the results. Ninety 
percent of programmers who learn pair programming prefer it, so we highly recommend it to 
all teams.

Pairing, in addition to providing better code and tests, also serves to communicate knowledge
throughout the team. As pairs switch, everyone gets the benefits of everyone's specialized 
knowledge. Programmers learn, their skills improve, they become move valuable to the team 
and to the company. Pairing, even on its own outside of XP, is a big win for everyone.

Test-Driven Development

Extreme Programming is obsessed with feedback, and in software development, good 
feedback requires good testing. Top XP teams practice "test-driven development", working in 
very short cycles of adding a test, then making it work. Almost effortlessly, teams produce 
code with nearly 100 percent test coverage.

It isn't enough to write tests: you have to run them. Here, too, Extreme Programming is 
extreme. These "programmer tests", or "unit tests" are all collected together, and every time 
any programmer releases any code to the repository (and pairs typically release twice a day 
or more), every single one of the programmer tests must run correctly. One hundred percent, 
all the time! This means that programmers get immediate feedback on how they're doing. 
Additionally, these tests provide invaluable support as the software design is improved.

Design Improvement

Extreme Programming focuses on delivering business value in every iteration. To accomplish 
this over the course of the whole project, the software must be well-designed. The alternative 
would be to slow down and ultimately get stuck. So XP uses a process of continuous design 
improvement called Refactoring, from the title of Martin Fowler's book, "Refactoring: 
Improving the Design of Existing Code".

The refactoring process focuses on removal of duplication (a sure sign of poor design), and 
on increasing the "cohesion" of the code, while lowering the "coupling". High cohesion and 
low coupling have been recognized as the hallmarks of well-designed code for at least thirty 
years. 

The result is that XP teams start with a good, simple design, and always have a good, simple 
design for the software. This lets them sustain their development speed, and in fact generally 
increase speed as the project goes forward.

Refactoring is, of course, strongly supported by comprehensive testing to be sure that as the 
design evolves, nothing is broken. Thus the customer tests and programmer tests are a 
critical enabling factor. The XP practices support each other, they are stronger together than 
separately.

Continuous Integration

Atomicat is a Division of Planet Limited    Confidential Page 4 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/
http://www.pairprogramming.com/


Development Methodology

Extreme Programming teams keep the system fully integrated at all times. We say that daily 
builds are for wimps: XP teams build multiple times per day. (One XP team of forty people 
builds at least eight or ten times per day!) 

The benefit of this practice can be seen by thinking back on projects you may have heard 
about (or even been a part of) where the build process was weekly or less frequently, and 
usually led to "integration hell", where everything broke and no one knew why.

Infrequent integration leads to serious problems on a software project. 

First of all, although integration is critical to shipping good working code, the team is not 
practiced at it, and often it is delegated to people who are not familiar with the whole system. 

Second, infrequently integrated code is often - I would say usually - buggy code. Problems 
creep in at integration time that are not detected by any of the testing that takes place on an 
un-integrated system. 

Third, weak integration process leads to long code freezes. Code freezes mean that you have
long time periods when the programmers could be working on important shippable features, 
but that those features must be held back. This weakens your position in the market, or with 
your end users.

Collective Code Ownership

On an Extreme Programming project, any pair of programmers can improve any code at any 
time. This means that all code gets the benefit of many people's attention, which increases 
code quality and reduces defects. 

There is another important benefit as well: when code is owned by individuals, required 
features are often put in the wrong place, as one programmer discovers that he needs a 
feature somewhere in code that he does not own. The owner is too busy to do it, so the 
programmer puts the feature in his own code, where it does not belong. This leads to ugly, 
hard-to-maintain code, full of duplication and with low (bad) cohesion.

Collective ownership could be a problem if people worked blindly on code they did not 
understand. XP avoids these problems through two key techniques: the programmer tests 
catch mistakes, and pair programming means that the best way to work on unfamiliar code is 
to pair with the expert. In addition to ensuring good modifications when needed, this practice 
spreads knowledge throughout the team.

Coding Standard

XP teams follow a common coding standard, so that all the code in the system looks as if it 
was written by a single - very competent - individual. The specifics of the standard are not 
important: what is important is that all the code looks familiar, in support of collective 
ownership.

Metaphor

Extreme Programming teams develop a common vision of how the program works, which we 
call the "metaphor". At its best, the metaphor is a simple evocative description of how the 
program works, such as "this program works like a hive of bees, going out for pollen and 
bringing it back to the hive" as a description for an agent-based information retrieval system.

Atomicat is a Division of Planet Limited    Confidential Page 5 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

Sometimes a sufficiently poetic metaphor does not arise. In any case, with or without vivid 
imagery, XP teams use a common system of names to be sure that everyone understands 
how the system works and where to look to find the functionality you're looking for, or to find 
the right place to put the functionality you're about to add.

Sustainable Pace

Extreme Programming teams are in it for the long term. They work hard, and at a pace that 
can be sustained indefinitely. This means that they work overtime when it is effective, and that
they normally work in such a way as to maximize productivity week in and week out. It's pretty
well understood these days that death march projects are neither productive nor produce 
quality software. XP teams are in it to win, not to die.

Last Words

Extreme Programming is a discipline of software development based on values of simplicity, 
communication, feedback, and courage. It works by bringing the whole team together in the 
presence of simple practices, with enough feedback to enable the team to see where they are
and to tune the practices to their unique situation.

Graphic Overview Of Extreme Programming

The following illustration shows the practices and the main "cycles" of XP.

Atomicat is a Division of Planet Limited    Confidential Page 6 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

Atomicat is a Division of Planet Limited    Confidential Page 7 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

Graphical Overview Of Extreme Programming Models

Atomicat is a Division of Planet Limited    Confidential Page 8 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

Atomicat is a Division of Planet Limited    Confidential Page 9 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

Atomicat is a Division of Planet Limited    Confidential Page 10 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

Some Questions & Answers About Extreme Programming

(The section by Ron Jeffries, editor XP Magazine)

Absence Of Errors

From an ongoing discussion on comp.software-eng:

Testing can only show the presence of errors, not their absence.

You XP guys advocate testing, not inspections or program proofs. Everyone knows that 
testing can only show that errors exist, not that they don't. 

This famous saying, originally made up by a programmer who hated to write tests1, is one of 
those logic games we all like to play when we're in school. It's formally correct, and 
completely misleading. The fact is that NOTHING, not inspection, not formal proof, not 
testing, can give 100% certainty of no errors. Yet all these techniques, at some cost, can in 
fact reduce the errors to whatever level you wish.

We teach our customers that they don't have to test anything unless they want it to work. 
What happens in the real world is that a large network of customer-specified functional tests 
in fact generate confidence. Not 100% confidence, but very great confidence. When we run 
all our tests, the programmers and the customers are very confident that we haven't screwed 
up anything important. Why? Because we have tested the hell out of everything important!

One final thought experiment. You're going to have to work with one of two word processors 
for the next six months. All I'll tell you is that the one in box A has been extensively tested and
all the errors found were removed. The one in box B has not been tested. Which one do you 
choose, and why?

1 A customer points out that E. W. Dijkstra actually first observed that testing can only show 
the presence of errors, not their absence. We knew that, but thought our fake attribution was 
more amusing. No disrespect was intended either to Professor Dijkstra or to the humour-
challenged.

Tradeoffs

Worst things first vs User choice of stories

We have Worst Things First, which tells us what to worry about. On the other hand, our 
division of responsibilities tells us that the customer decides which stories to work on. Does 
WTF only apply within the particular story we have in hand now, or do we somehow exercise 
programmer forethought in deciding what we need to worry about?

Remember that when we do the Commitment Schedule, at that time we assign two priorities 
to stories: business value, and risk. Then we move stories toward the front which are high on 
either one, favouring risk reduction as much as possible.
Because one of the Extreme Values is Communication, it's quite important that the 
programmers educate the customers on the risks that they foresee. Much of this education 
happens during the commitment schedule, but effective teams do it all the time.

Atomicat is a Division of Planet Limited    Confidential Page 11 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

Perhaps a couple of developers sit down with customers and talk about risky areas: "You 
know, some of the approaches we're taking could slow down worse than one-for-one. When 
we get to 100 users, parts of the system could be 1,000 or 10,000 times slower, not just 100 
times. You might want to be sure to write a story about performance and put it in the hopper."
There are two key things to remember: first, XP programmers don't care at all if a story 
they've never heard of shows up in the next iteration. So if a story they suggested shows up, 
like "System must support 100 users with response time under one second", it's no problem 
at all.

Second, remember that the XP response to risk is to reduce it, not to solve the entire 
problem. So favor doing an experiment, or a spike solution, to find out how to deal with the 
performance issue. Once you know how you'll solve it, you can wait to put it into the system 
until the customers give it business value.

XP vs The real world

At some level, XP principles don't apply in the non-programming world. We can't build a 
bridge and have a user story when we're 75% done which says that we'd really like it to be 
about 12 feet to the left over here. XP seems to be built on the malleability of software, and 
on practices that help maintain that malleability. Do you have any feeling for where the 
boundary lines in these fall. One obvious grey area is the non-software parts of software 
projects. e.g. we need to train N-thousand users on this system, providing inertia once we 
start training them.

You're on the right track. There are no magic answers in this area. Certainly you try to defer 
decisions that will lock you in. The rule Model First, which says to defer working on the GUI 
as long as possible, is an example. As soon as you start working on the GUI, you're in an 
area where you can't change things without confusing your users.

The C3 team put off GUIs for a long time. But now even they find that when they make 
changes to the GUI that wouldn't bother a technical person, the users often get confused. We 
have to inform them, make changes really obvious, and so on. Even so, mostly the users 
come and ask.

C3 has the advantage that all the users are right there. With a delivered product, changing 
things that humans know about is much harder. There are lots of tricks out there: compatibility
modes, configurable human interfaces, and so on. None of them are very satisfying. All I can 
offer is to try not to lock in, make the system as self-documenting as possible, and keep the 
locked parts of the system isolated from parts that may need to change.

Incrementalism vs Rewrite

XP seems built on incremental modification of software, fixing things that exist by gradual 
transformation, even if those things are really bad. Is there a point at which you say forget it, 
start again from scratch. Presumably there is, since I think that's what happened with the 
original C3 system. How does one tell?

XP is about ways to keep a system from needing a rewrite. By refactoring mercilessly, you 
can keep the code clean and malleable. When you walk into an existing system that wasn't 
built that way, or a system that somehow got out of hand, the temptation to start over is 
strong.

You're right that C3 started over. We have even reported that we wish we had trashed the few

Atomicat is a Division of Planet Limited    Confidential Page 12 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

things from the old system that we did keep! But it's a rare manager who will let this happen, 
since tons of money have probably already been invested in the old system. 

If you do get the chance to start over, using XP is very important. Remember the famous 
"second system syndrome", where the developers throw in all the stuff they didn't get to use 
in the first system, resulting in a Fat Albert program that never gets done, and would consume
all the computers in the universe if it ever did run. Now, more than ever, you need to do the 
simplest thing that could possibly work.

Much as I hate to say it, as a guy who hates working with horrible code, often your best 
chance is to clean it up as you go. It's possible to address one area at a time, write tests for it,
refactor it, and move on. But the pain is sometimes just too much to bear.

Remember the rule, Doctor, it hurts when I do this. If the most mature and strongest 
developers on the team think that the program is doomed, it very likely is. Even if 
management is pushing to maintain the existing program back to health, measure your 
progress and feed it back to them. If it's good enough, fine, keep going. If it's not, help them to
see that fact.

And don't forget spike solution! Sometimes you just have to take a week off and rewrite the 
system, or build a prototype. I've used code written in my free time to sell new ideas, and I'm 
sure you have too.

Final Comments

XP is a process allowing development to proceed smoothly, if it's applied throughout the 
project. If you're playing catchup, it'll be harder to do.

And never underestimate the value of your past experience. A team of experienced 
developers doing XP will blow away an inexperienced team. Let your educated intuition work 
for you. If you think the program should be destroyed, quite possibly it should. If you think an 
area is risky, it almost certainly is. And if you think some part of the system will be hard to 
evolve, you're probably right.

Follow your intuition and apply the XP rules as you develop. No one can do any better!

Quality Assurance

How is Software Quality Assurance and Software Configuration Management 
integrated into Extreme Programming?

XP defines two levels of testing. The first is unit testing, which must be performed by the 
programmers as they work. Each class implemented must have programmer-developed unit 
tests, for everything that "could possibly break". These tests are to be written during coding of
the class, preferably right before implementing a given feature. Tests are run as frequently as 
possible during development, and all unit tests in the entire system must be running at 100% 
before any developer releases his code. (By release, we mean transferring from his own code
space to the code integration area. This is handled differently, of course, depending on the 
code management tools in place.)

The second level of testing is called functional testing. Each feature of the system (which is 
defined by something we call a User Story, rather like a Use Case) must have one or more 
functional tests that test it. The functional tests are the responsibility of what we call the 

Atomicat is a Division of Planet Limited    Confidential Page 13 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

"customer", the body responsible for defining the requirements. 

The implementation and running of functional tests can be done by the Software QA 
group, and in fact this is an ideal way to do it.

Within XP, are there any specification baselines, test baselines, QA Acceptance testing,
and CM Release Management/Change Control? 

Let me take a shot at how XP works in these areas.

XP is an inherently incremental process, with software being released to "production" as 
frequently as possible. This generally means that programmers release their work to the 
common development pool approximately daily, and that means that if a full system were built
on that day, their code would be included in that build. The time period between full system 
builds varies depending on the environment: since you have chosen a particularly difficult 
integration language (C++), I could imagine that you would build less frequently. We would 
recommend, however, that the full system be integrated as often as possible, at least daily. 
(This may seem aggressive to you. We'd have to talk about what is possible in your 
environment.)

Since XP is incremental, developers are working in short time increments we call iterations: 
we recommend about three weeks. Features (user stories) are broken down to the point of 
detail that allows a developer and his partner to implement the stories they're working on in 
that time period. We like  the functional tests for that iteration to be complete and available no 
more than half-way through the iteration. (This usually means that QA is writing tests for the 
next iteration while this one is going on.)

All through the iteration, programmers can use QA's functional tests to determine whether 
they have met the requirements. (They are also using their own unit tests to determine 
whether their individual classes are doing what they should. This is usually at a much finer 
level of detail.)

Baselines work this way: when the code for a story is released, all the functional tests for it 
should be in place, and will ideally be working. Inevitably some will not, especially with teams 
just beginning with XP. One of the quality measures in the process is the daily graph of 
performance on functional tests. The general shape of this graph, over the course of the full 
system release period, is that of two s-curves: the upper curve is the total number of tests 
written, the lower curve is the number running at 100%. A healthy project of course shows 
these curves coming together at 100% by the end of the schedule.

The code management software needs of course to reflect the requirements scheduled for 
release. This is determined by the "customers", as part of the planning components we call 
the commitment schedule (overall plan for a major release) and the iteration plan (plan for a 
(three week) iteration). The baseline of what is in the system tracks what is actually requested
by the customers. 

Development doesn't care whether this is new functionality or a change to old. They don't 
care whether a given user story addresses something that was planned for or not. XP is 
completely flexible with regard to change management: development merely estimates how 
long any desired feature will take, and works on it when "customer" schedules it into an 
iteration. (Dependencies of course exist, but we find that far fewer exist than most developers
believe. Drilling into that subject is beyond the scope of this appendix.)

Atomicat is a Division of Planet Limited    Confidential Page 14 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

When do the all the customer sign-offs occur?

Customer sign-off is continuous. Each iteration has its functional tests. Everyone is fully up to 
date on which tests are working and which are not. If tests scores are trailing implementation 
by too much, the customer will inevitably schedule more work against older features that are 
incorrect (or whose requirements have changed). When test scores are tracking 
implementation, the customer knows it and is comfortable requesting new functionality.

Because the test scores are public and visible, everyone has the same level of understanding
of where quality is. Generally scores are showing a good curve toward release, and everyone
gets increasing comfort as the release date shows up. And, of course, if tests are not 
tracking, everyone knows that and the priority of getting things right naturally increases.

The overall idea of this part of the process is to provide the most rapid feedback possible to 
everyone, customers and developers alike. That's why we like all the functional test run every 
night. Next morning, if anything has been broken the day before, everyone knows it and can 
deal with it effectively (since it was only yesterday's work that could be the problem). The 
faster the feedback, the faster development of quality software can proceed.

What are the Quality Assurance and Software Configuration Management roles and 
responsibilities with Extreme Programming?

We prefer for there to be a separate organization for functional testing (probably exactly like 
your QA function, with testing results made public very quickly). XP, however, only says that 
there must be functional tests: it does not specify organizationally how they must be done. 
Experience is that testing is best done by a separate function - but one that is very tightly 
integrated with development rather than at the end of a long pipeline.

Configuration management is also up to the team. It is usually necessary to have one or more
individuals responsible for CM. We have no special rules or practices addressing how a group
would manage the requirement to build multiple systems from one code base. Our main 
approach would be: for each release configuration, there must be corresponding functional 
tests, and these must be run before that configuration is released to the (real) customer. We 
would think that development would proceed by running kind of a "union" of all the functional 
tests of all the configurations.

We'd probably have to talk more specifically about how your specific organization needs to 
build configurations to say much more about that.

Do you use IEEE, SEI, ISO9000 standards as references to acquire the fundamentals of
defining accurate requirements for customers and software engineering users? How 
can a person write storyboards without having the basics of pinpointing and 
developing sound requirements?

We would agree that those who play the customer role have to know what they want. We do 
not, however, recommend any particularly formal requirements writing or recording 
mechanism. Instead, what we are working toward (XP is for small teams, after all) is to have a
clear understanding in the heads of customers, developers, and testers as to what is wanted. 

Rather than have, say, an "analyst" sit down with the customer and laboriously translate his 
mumblings into something representing what is wanted, and then having a "designer" take 
the analysis and build a design, and so on, small teams function best if the customers and 
designer/developers talk to one another until they develop a common vocabulary of what is 

Atomicat is a Division of Planet Limited    Confidential Page 15 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/


Development Methodology

needed and how it will be done. In XP, we would like to have a common level of 
understanding in all heads, each focused on its own particular interests:

Customers: what's needed, what's the business value, when do we need it?
Developers: what's needed, how can I build this, how can I test my code, how long will it 
take?
Testers: what's needed by the customers, how can I test whether developers have done it?

As you can see, the testers' functional tests are what close the loop, assuring everyone that 
what was asked for was what we got. The best way to do XP is with a separate functional 
testing organization that is closely integrated into the process. It would be delightful to have 
that organization run by an experienced QA manager trained in XP.

Is Extreme Programming not for Software Quality Engineering and Software 
Configuration Management practitioners?

XP is a development discipline that is for customers (in their role as specifiers and their role 
as investors and their role as testers and acceptors) and for developers. As such, the Quality 
Engineering and Configuration Management roles are critical to the effort. They have to be 
assigned and played in a way that is consistent with the mission of the group, the level of 
criticality of quality, and so on. We'd need to talk in detail about your situation to see just 
where the XP terminology connects with yours, but your QA functions need to be done in any 
effective software effort, whether in a separate organization or not. So XP certainly is for 
software quality engineering and software configuration management, as part of a healthy 
overall process.

Atomicat is a Division of Planet Limited    Confidential Page 16 of 16
© 2019 Planet Limited 
Planet Limited (Company Nr 5952219)
Level 1, 120 Eleventh Avenue, Tauranga, New Zealand
www.planetlimited.io

http://www.goplanet.io/
http://www.goplanet.io/

	Development Methodology
	Introduction
	What Is The X-Treme Programming Methodology (XP)?
	Whole Team
	Planning Game
	Customer Tests
	Small Releases
	Simple Design
	Pair Programming
	Test-Driven Development
	Design Improvement
	Continuous Integration
	Collective Code Ownership
	Coding Standard
	Metaphor
	Sustainable Pace
	Last Words
	Graphic Overview Of Extreme Programming

	Graphical Overview Of Extreme Programming Models
	Some Questions & Answers About Extreme Programming
	Absence Of Errors
	Tradeoffs
	Quality Assurance


